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Abstract

The conjugate gradient method of minimization is applied successfully in the present optimal control algorithm in

determining the optimal boundary control function for a concurrent flow problem based on the desired thermal entry

length and fluid temperatures.

The validity of the present optimal control analysis is examined by means of numerical experiments. Different de-

sired thermal entry length and fluid temperature distributions are given in three test cases and the corresponding op-

timal control heat fluxes are determined. The results show that the optimal boundary heat fluxes can be obtained with

an arbitrary initial guess within seconds of CPU time on a Pentium III-600 MHz PC.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of the simultaneous determination of both fluid temperatures for entrance concurrent flow concerns all

usual double pipe, concurrent flow heat exchangers consisting of two parallel plate channels or concentric circular tubes

when fluids at different temperatures enter the annular space and central tube at the same side of the heat exchanger.

The traditional methods of predicting heat transfer in such situations are based on the assignment of heat transfer

coefficients for each flow regardless of the actual coupling of the boundary condition. Such a coupling can be important

in the thermal entry regions, especially with laminar flow and therefore the problem of heat transfer at the entrance

region in concurrent flow double pipe heat exchanger has been carefully investigated [1–3].

Sometimes, it may be of important to design the desired length of thermal entry region or to design the desired fluid

temperatures in the double pipe, concurrent flow heat exchanger for some specific applications or experiments by

applying the optimal boundary control functions. Under this consideration, an optimal control algorithm should be

combined with the concurrent flow problem to match the requirement.

Optimal control laws have received increased attention in recent years in many engineering applications. Such

system can be controlled either at the boundary (boundary control) or through the spatial domain (distributed control),

or both.

Optimal control techniques have been applied in many different area of research, especially in heat transfer engi-

neering. This type of problems has been initiated by Butkovskii and Lerner [4]. Meric [5,6] used the conjugate gradient

method (CGM) to find the optimal boundary control temperatures for a non-linear system, i.e. temperature-dependent

thermal properties. Chen and Ozisik used similar algorithm to determine the optimal heating sources for a slab [7,8] and

for a cylinder [9] in a non-linear optimal control problem. Recently, Huang used a similar algorithm to determine the

optimal boundary control functions for a non-linear heat transfer problem [10] and to estimate the unknown control
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forces for a forced vibration problem [11]. The optimal control problems considered above are not for the coupled

system.

The objective of the present study is to solve the coupled optimal control problem for concurrent flow in determining

the boundary control function based on the desired thermal entry length and fluid temperatures by using the CGM.

Moreover, an explicit expression for the determination of search step sizes is also derived with the help of the solutions

of sensitivity problem.

The CGM of optimal control derives basis from the perturbation theory [12] and transforms an inverse problem to

the solution of three problems, namely, the direct problem, a sensitivity problem and an adjoint problem, which will be

discussed in detail in the following text.

2. Direct problem

To illustrate the methodology for developing expressions for use in determining the optimal boundary control heat

flux for concurrent flow problem, we consider the following optimal control problem. Two fluids at different tem-

peratures enter through the same inlet of the parallel plane channels. The upper boundary surface is subjected to a

control heat flux qðzÞ. The geometry and coordinates for this concurrent flow problem is illustrated in Fig. 1.

The dimensionless formulation of the coupled concurrent flow problem can be expressed as [1]:

U1ðRÞ
oh1ðR; zÞ

oz
¼ o2h1ðR; zÞ

oR2

KHU2ðRÞ
oh2ðR; zÞ

oz
¼ o2h2ðR; zÞ

oR2

8><
>: in 0 < R < 1; 0 < z < zf ð1aÞ

Nomenclature

H heat capacity flow rate ratio

J functional defined by Eq. (2)

J 0 gradient of functional defined by Eq. (15)

K fluid thermal resistance ratio

Kw wall thermal resistance ratio

P direction of descent defined by Eq. (4)

qðzÞ control function

U1ðRÞ, U2ðRÞ velocity profiles

Y1, Y2 desired fluid temperatures

Greek symbols

b search step size

c conjugate coefficient

h1, h2 dimensionless fluid temperatures

Dh1, Dh2 sensitivity functions defined by Eqs. (6a)–

(6d)

k1, k2 Lagrange multipliers defined by Eqs. (12a)–

(12d)

Superscript

n iteration index
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Fig. 1. Geometry and coordinates for concurrent flow double pipe heat exchangers.
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oh1ð0; zÞ
oR

¼ 0

oh2ð0; zÞ
oR

¼ qðzÞ

8>><
>>:

at R ¼ 0 ð1bÞ

K
oh1ð1; zÞ

oR
þ oh2ð1; zÞ

oR
¼ 0

Kw

oh1ð1; zÞ
oR

þ h1ð1; zÞ � h2ð1; zÞ ¼ 0

8>><
>>:

at R ¼ 1 ð1cÞ

h1ðR; 0Þ ¼ 0

h2ðR; 0Þ ¼ 1

�
at z ¼ 0 ð1dÞ

Here h1 and h2 are the temperatures in the central (fluid 1) and annular (fluid 2) space, respectively. The coordinate R for

the inner tube is measured from the center of the tube, and the coordinate R for the outer tube is measured from the

outer wall of the tube. K, H and Kw are dimensionless numbers defined in [1] and called fluid thermal resistance ratio,

heat capacity flow rate ratio and wall thermal resistance ratio, respectively. For the laminar flow case U1ðRÞ ¼ 2ð1� R2Þ
and U2ðRÞ ¼ 6Rð1� RÞ.

It is obvious from Eq. (1c) that two fluids are coupled at the boundary R ¼ 1. The direct problem considered here is

concerned with calculating the fluid temperature when the control function qðzÞ, thermal properties and inlet conditions

are known. The implicit finite-difference method can be used to solve this direct problem.

3. Optimal control problem

In the optimal control problem, the control function qðzÞ is regarded as being unknown, but everything else in Eqs.

(1a)–(1d) is known. In addition, the desired thermal entry length and fluid temperature distributions within the specified

domain (i.e. from zd to zf ) are considered available.

Let the desired fluid temperatures be denoted by Y1ðR; zÞ and Y2ðR; zÞ with desired thermal entry length zd. Then this

optimal control problem can be stated as follows: by utilizing the above mentioned desired thermal entry length zd and
temperature data Y1ðR; zÞ and Y2ðR; zÞ, estimate the strength of the optimal control function qðzÞ over the specified

boundary to match this requirement.

The solution of the present optimal control problem is to be obtained in such a way that the following functional is

minimized:

J ½qðzÞ� ¼
Z zf

z¼zd

Z 1

R¼0

f½h1ðR; zÞ � Y1ðR; zÞ�2 þ ½h2ðR; zÞ � Y2ðR; zÞ�2gdRdzþ
a
2

Z zf

z¼0

qðzÞ2 dz ð2Þ

Here a is a given weighting coefficient. h1ðR; zÞ and h2ðR; zÞ are the estimated or computed temperatures within the

specified domain. These quantities are determined from the solution of the direct problem given previously by using the

estimated control function qðzÞ.
The first term on the right hand side is the integration of the square of the deviation between the estimated and

desired temperatures for two different fluids. The second term is the integration with respect to z of the square of the

control function qðzÞ, over the control surface zf multiplied by the weighting coefficient a.
The square of the control function (i.e. the quadratic form) guarantees the existence of the minimum and avoid the

cancellation effect between the positive and negative values.

The weighting coefficient a is the design parameter that control the closeness of the estimated temperatures to the

desired temperatures. It can also be used as the adjustment factor of the control function qðzÞ. When there exist some

reasons such that the control function cannot be applied as what we have calculated, under this circumstance we should

increase the value of weighting coefficient. As a result, the estimated control function will be damped and the supplying

rate of heat fluxes can be satisfied.

4. Conjugate gradient method for minimization

The following iterative process based on the CGM [12] is now used for the estimation of control function qðzÞ by
minimizing the above functional J ½qðzÞ�:
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qnþ1ðzÞ ¼ qnðzÞ � bnP nðzÞ; n ¼ 0; 1; 2; . . . ð3Þ

where bn is the search step size in going from iteration n to iteration nþ 1, and PnðzÞ is the direction of descent (i.e.

search direction) given by

PnðzÞ ¼ J 0nðzÞ þ cnP n�1ðzÞ ð4Þ

which is a conjugation of the gradient direction J 0nðzÞ at iteration n and the direction of descent Pn�1ðzÞ at iteration

n� 1. The conjugate coefficient is determined from

cn ¼
R zf
z¼0

½J 0nðzÞ�2 dzR zf
z¼0

½J 0n�1ðzÞ�2 dz
with c0 ¼ 0 ð5Þ

To perform the iterations according to Eq. (4), we need to compute the step size bn and the gradient of the functional

J 0nðzÞ. In order to develop expressions for the determination of these two quantities, a ‘‘sensitivity problem’’ and an

‘‘adjoint problem’’ are constructed as described below.

5. Sensitivity problem and search step size

It is assumed that when the control function qðzÞ undergoes a variation DqðzÞ, h1ðR; zÞ and h2ðR; zÞ are perturbed by

Dh1ðR; zÞ and Dh2ðR; zÞ, respectively. Then replacing in the direct problem qðzÞ by qðzÞ þ DqðzÞ, h1ðR; zÞ by

h1ðR; zÞ þ Dh1ðR; zÞ, and h2ðR; zÞ by h2ðR; zÞ þ Dh2ðR; zÞ, subtracting from the resulting expressions the direct problem

and neglecting the second-order terms, the following sensitivity problem for the sensitivity functions Dh1ðR; zÞ and

Dh2ðR; zÞ are obtained.

U1ðRÞ
oDh1ðR; zÞ

oz
¼ o2Dh1ðR; zÞ

oR2

KHU2ðRÞ
oDh2ðR; zÞ

oz
¼ o2Dh2ðR; zÞ

oR2

8><
>: in 0 < R < 1; 0 < z < zf ð6aÞ

oDh1ð0; zÞ
oR

¼ 0

oDh2ð0; zÞ
oR

¼ DqðzÞ

8><
>: at R ¼ 0 ð6bÞ

K
oDh1ð1; zÞ

oR
þ oDh2ð1; zÞ

oR
¼ 0

Kw

oDh1ð1; zÞ
oR

þ Dh1ð1; zÞ � Dh2ð1; zÞ ¼ 0

8><
>: at R ¼ 1 ð6cÞ

Dh1ðR; 0Þ ¼ 0
Dh2ðR; 0Þ ¼ 0

�
at z ¼ 0 ð6dÞ

We should note that the above sensitivity problems can be solved by using the implicit finite-difference method.

The functional Jðqnþ1Þ for iteration nþ 1 is obtained by rewriting Eq. (2) as

J ½qnþ1ðzÞ� ¼
Z zf

z¼zd

Z 1

R¼0

½h1ðR; z; qn � bnP nÞ � Y1ðR; zÞ�2 dRdzþ
Z zf

z¼zd

Z 1

R¼0

½h2ðR; z; qn � bnP nÞ � Y2ðR; zÞ�2 dRdz

þ a
2

Z zf

z¼0

ðqn � bnP nÞ2 dz ð7Þ

where we replaced qnþ1ðzÞ by the expression given by Eq. (3). If the estimated temperatures h1ðR; z; qn � bnPnÞ and

h2ðR; z; qn � bnP nÞ are linearized by a Taylor expansion, Eq. (7) takes the form

J ½qnþ1ðzÞ� ¼
Z zf

z¼zd

Z 1

R¼0

½h1ðR; z; qnÞ � bnDh1ðPnÞ � Y1ðR; zÞ�2 dRdzþ
Z zf

z¼zd

Z 1

R¼0

½h2ðR; z; qnÞ � bnDh2ðPnÞ

� Y2ðR; zÞ�2 dRdzþ
a
2

Z zf

z¼0

ðqn � bnP nÞ2 dz ð8Þ

where h1ðR; z; qnÞ and h2ðR; z; qnÞ are the solutions of the direct problem by using estimate control function qðzÞ.
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The sensitivity functions Dh1ðPnÞ and Dh2ðPnÞ are taken as the solutions of problems (6a)–(6d) and (7) by letting

DqðzÞ ¼ PnðzÞ.
Eq. (8) is differentiated with respect to bn, and equating it equal to zero to obtain the following expression for the

search step size bn as

bn ¼
R zf
z¼zd

R 1

R¼0
½2ðh1 � Y1ÞDh1ðPnÞ þ 2ðh2 � Y2ÞDh2ðPnÞ�dRdzþ

R zf
z¼0

aqnPn dzR zf
z¼zd

R 1

R¼0
½2Dh2

1ðPnÞ þ 2Dh2
2ðPnÞ�dRdzþ

R zf
z¼0

aPn2 dz
ð9Þ

6. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (1a) is multiplied by the Lagrange multiplier (or adjoint function) k1ðR; zÞ and
k2ðR; zÞ and the resulting expression is integrated over the specified domain. Then the result is added to the right hand

side of Eq. (2) to yield the following expression for the functional J ½qðzÞ�:

J ½qðzÞ� ¼
Z zf

z¼zd

Z 1

R¼0

f½h1ðR; zÞ � Y1ðR; zÞ�2 þ ½h2ðR; zÞ � Y2ðR; zÞ�2gdRdzþ
a
2

Z zf

z¼0

qðzÞ2 dzþ
Z zf

z¼0

Z 1

R¼0

k1

o2h1ðR; zÞ
oR2

�

� U1ðRÞ
oh1ðR; zÞ

oz

	
dRdzþ

Z zf

z¼0

Z 1

R¼0

k2

o2h2ðR; zÞ
oR2

�
� KHU2ðRÞ

oh2ðR; zÞ
oz

	
dRdz; in 0 < R < 1; 0 < z < zf

ð10Þ

Firstly, the variation DJ is obtained by perturbing qðzÞ by qðzÞ þ DqðzÞ, h1ðR; zÞ by h1ðR; zÞ þ Dh1ðR; zÞ, and h2ðR; zÞ
by h2ðR; zÞ þ Dh2ðR; zÞ in Eq. (10), subtracting from the resulting expression the original Eq. (10) and neglecting the

second-order terms. We thus find

DJ ½qðzÞ� ¼
Z zf

z¼0

Z 1

R¼0

f2½h1 � Y1�Dh1 þ 2½h2 � Y2�Dh2guðz� zdÞdRdzþ a
Z zf

z¼0

qðzÞDqdzþ
Z zf

z¼0

Z 1

R¼0

k1

o2Dh1ðR; zÞ
oR2

�

� U1ðRÞ
oDh1ðR; zÞ

oz

	
dRdzþ

Z zf

z¼0

Z 1

R¼0

k2

o2Dh2ðR; zÞ
oR2

�
� KHU2ðRÞ

oDh2ðR; zÞ
oz

	
dRdz;

in 0 < R < 1; 0 < z < zf ð11Þ

Here uð�Þ represents a step function. In Eq. (11), the double integral terms are integrated by parts; the boundary

conditions of the sensitivity problem are utilized. The vanishing of the integrands leads to the following adjoint problem

for the determination of k1ðR; zÞ and k2ðR; zÞ:

o2k1ðR; zÞ
oR2

þ U1ðRÞ
ok1ðR; zÞ

oz
þ 2ðh1 � Y1Þuðz� zdÞ ¼ 0

o2k2ðR; zÞ
oR2

þ KHU2ðRÞ
ok2ðR; zÞ

oz
þ 2ðh2 � Y2Þuðz� zdÞ ¼ 0

8><
>: in 0 < R < 1; 0 < z < zf ð12aÞ

ok1ð0; zÞ
oR

¼ 0

ok2ð0; zÞ
oR

¼ 0

8><
>: at R ¼ 0 ð12bÞ

ok1ð1; zÞ
oR

þ ok2ð1; zÞ
oR

¼ 0

Kw

ok1ð1; zÞ
oR

þ k1ð1; zÞ � Kk2ð1; zÞ ¼ 0

8><
>: at R ¼ 1 ð12cÞ

k1ðR; zfÞ ¼ 0

k2ðR; zfÞ ¼ 0

�
at z ¼ zf ð12dÞ

The adjoint problem is different from the direct problem in that the final position conditions at z ¼ zf is specified
instead of the customary initial position condition. However, this problem can be transformed to a standard problem

by the transformation of the variable as Z ¼ zf � z. Then the standard techniques of implicit finite differences method

can be used to solve the above adjoint problem.
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Finally, the following integral term is left

DJ ¼
Z zf

z¼0

½k2ð0; zÞ þ aqðzÞ�Dqdz ð13Þ

From definition [12], the functional increment can be presented as

DJ ¼
Z zf

z¼0

ðJ 0 DqÞdz ð14Þ

A comparison of Eqs. (13) and (14) leads to the following expression for the gradient of functional J 0½qðzÞ�:
J 0½qðzÞ� ¼ k2ð0; zÞ þ aqðzÞ ð15Þ

         

Fig. 2. (a) The estimated optimal control function qðzÞ for Y1 ¼ Y2 ¼ 0:8, zd ¼ 0 and a ¼ 0 in test case 1. (b) The estimated temper-

atures, h1 and h2, for Y1 ¼ Y2 ¼ 0:8, zd ¼ 0 and a ¼ 0 in test case 1.
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7. Computational procedure

The computational procedure for the solution of this optimal control problem may be summarized as follows:

Suppose qnðzÞ is available at iteration n
Step 1. Solve the direct problem given by Eqs. (1a)–(1d) for h1ðR; zÞ and h2ðR; zÞ.
Step 2. Solve the adjoint problem given by Eqs. (12a)–(12d) for k1ðR; zÞ and k2ðR; zÞ.
Step 3. Compute the gradient of the functional J 0½qðzÞ� from Eq. (15).

Step 4. Compute the conjugate coefficients cn and the direction of descent PnðzÞ from Eqs. (5) and (4), respectively.

Step 5. Set DqðzÞ ¼ PnðzÞ, and solve the sensitivity problems given by Eqs. (6a)–(6d) for Dh1ðR; zÞ and Dh2ðR; zÞ,
respectively.

Step 6. Compute the search step size bn from Eq. (9).

                

Fig. 3. (a) The estimated optimal control function qðzÞ for Y1 ¼ Y2 ¼ 0:8, zd ¼ 5 and a ¼ 0 in test case 1. (b) The estimated temper-

atures, h1 and h2, for Y1 ¼ Y2 ¼ 0:8, zd ¼ 5 and a ¼ 0 in test case 1.
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Step 7. Compute the new estimation for qnðzÞ from Eq. (3) and return to Step 1 until the given number of iteration

is satisfied.

8. Results and discussions

The physical model for the usual double pipe heat exchanger consists of two parallel plane channels is examined in

the present study. Two fluids at different temperatures, h1ðR; 0Þ ¼ 0:0 and h2ðR; 0Þ ¼ 1:0, respectively, enter through the

same inlet. It is required that the temperature distributions for two fluids be satisfied with the desired uniform tem-

perature for a specified thermal entry length zd by controlling the strength of boundary heat flux qðzÞ on the plane

surface.

The length of tube is taken as zf ¼ 10 in the present study and the space increments used in numerical calculations

are taken as DR ¼ 0:01 (i.e. 200 grid points in R space) and Dz ¼ 0:01 (i.e. 1000 grid points in z space), respectively. The
fluid thermal resistance ratio is taken as K ¼ 0:1, the heat capacity flow rate ratio is chosen as H ¼ 0:5 and the wall

thermal resistance ratio is assumed as Kw ¼ 0:0.

Fig. 4. (a) The estimated optimal control function qðzÞ for Y1 ¼ Y2 ¼ 0:8, zd ¼ 2:8 and a ¼ 0 in test case 1. (b) The estimated tem-

peratures, h1 and h2, for Y1 ¼ Y2 ¼ 0:8, zd ¼ 2:8 and a ¼ 0 in test case 1.
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To illustrate the accuracy of the CGM in predicting qðzÞ with optimal control analysis from the knowledge of desired

thermal entry length and fluid temperature distributions, we consider following three specific examples.

One of the advantages of using the CGM is that the initial guesses of the unknown control function qðzÞ can be

chosen arbitrarily. In all the test cases considered here, the initial guesses of control function used to begin the iteration

are taken as q0ðzÞ ¼ 0:0.
We now present below the numerical experiments in determining qðzÞ by the optimal control analysis:

8.1. Numerical test case 1

The optimal control problem is first examined by using the desired thermal entry length zd ¼ 0:0 and the desired fluid

temperature distributions Y1ðR; zÞ ¼ Y2ðR; zÞ ¼ 0:8 for z greater than zd. This requirement implies that the fluid tem-

peratures are to be controlled as a uniform distribution started from the entrance by controlling the boundary heat flux.

Due to the diffusion of heat, it is impossible to be achieved, however, the optimal thermal entry length (i.e. the shortest

length for fluids to become desired uniform temperature) can thus be obtained.

(a)

(b)

Fig. 5. (a) The estimated optimal control functions qðzÞ for Y1 ¼ Y2 ¼ 0:8, zd ¼ 0 and a ¼ 0, 50 and 250 in test case 1. (b) The estimated

temperatures at R ¼ 1:0 for Y1 ¼ Y2 ¼ 0:8, zd ¼ 0 and a ¼ 0, 50 and 250 in test case 1.
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For a ¼ 0:0, after 20 iterations (we have observed from the numerical experiments that 20 iterations are good en-

ough to obtain the convergent solutions) the functional is calculated as J ¼ 0:169 (CPU time at Pentium III-600 MHz

PC is about 25 s) and the solutions for the optimal control function can be obtained. Fig. 2a shows the estimated

control functions qðzÞ and Fig. 2b illustrates the results for the estimated temperature distributions for two different

fluids at some specified R along z. It is obvious from Fig. 2a and b that the fluid temperatures approached to

Y1ðR; zÞ ¼ Y2ðR; zÞ ¼ 0:8 beyond z ¼ 2:0. This implies that the optimal thermal entry length for the desired fluid tem-

peratures Y1 ¼ Y2 ¼ 0:8 is about 2.0.

Once the fluid temperatures become uniform, the estimated control heat flux approaches to zero (i.e. insulated

condition) beyond z ¼ 2:0, this also implies that the insulation of the tube surface will maintain this temperature

distribution, there is no need to add or to remove energy from the tube surface. The average error for the estimated

temperatures is calculated as ERR¼ 0.96% for z from 2 to 10. The definition of average error ERR is given as

ERR% ¼
PM

m¼1

PN1

n1¼1
h1ðm;n1Þ�Y1ðm;n1Þ

Y1ðm;n1Þ

��� ���þPN2

n2¼1
h2ðm;n2Þ�Y2ðm;n2Þ

Y2ðm;n2Þ

��� ���n o
½MðN1þ N2Þ� � 100% ð16Þ

Fig. 6. (a) The estimated optimal control function qðzÞ for Y1 ¼ Y2 ¼ 0:2, zd ¼ 0 and a ¼ 0 in test case 2. (b) The estimated temper-

atures, h1 and h2, for Y1 ¼ Y2 ¼ 0:2, zd ¼ 0 and a ¼ 0 in test case 2.
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here m represents the index of discreted temperatures in z direction while n1 and n2 indicate the index of discreted

temperatures in R direction. (M � N1) and (M � N2) represent the total number of discreted temperatures for fluid 1

and fluid 2 within specified domain.

When zd ¼ 5:0 is considered and all other conditions are the same as the previous case. After 20 iterations the

functional is calculated as J ¼ 0:0065 and the solutions for optimal control function and estimated temperatures are

shown in Fig. 3a and b, respectively. The average error for the estimated temperature is calculated as ERR ¼ 0:73% for

z from 6.6 to 10.

It is obvious from Fig. 3a that the control function did not change until z ¼ 5:0, however, due to the diffusion of

heat, temperature distribution did not approach to 0.8 until z ¼ 7:0. If one is asked preciously to have the thermal entry

length equal to z ¼ 0:5, the control function should be applied ahead of z ¼ 0:5. For instant, if zd ¼ 2:8 is used, the

estimated control function and temperatures are illustrated in Fig. 4a and b, respectively. From Fig. 4b we learn that the

thermal entry length is now equal to 5.0.

In order to examine the effectiveness of the weighting coefficient a to the control function we consider the following

numerical experiments: The numerical parameters are the same as the original conditions except that a ¼ 50 and 250 are

Fig. 7. (a) The estimated optimal control functions qðzÞ for Y1 ¼ Y2 ¼ 0:2, zd ¼ 0 and a ¼ 0, 50 and 500 in test case 2. (b) The estimated

temperatures at R ¼ 1:0 for Y1 ¼ Y2 ¼ 0:2, zd ¼ 0 and a ¼ 0, 50 and 500 in test case 2.
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used. After 20 iterations for each case, the optimal control function qðzÞ can be determined. Fig. 5a shows the estimated

qðzÞ and Fig. 5b indicates the interface temperature distribution h1ð1; zÞ and h2ð1; zÞ, (for the case Kw ¼ 0, h1 ¼ h2), for

a ¼ 0, 50 and 250, respectively. It is clear from these figures that as the weighting coefficient increases, the absolute value

of maximum strength of the control function and the accuracy of the estimated temperature are both decreased, and the

optimal thermal entry length is increased. This implies that as a ¼ 0 we can always shorten the optimal thermal entry

length and obtain more accurate temperature profile but at the same time higher strength of control function is needed.

If we integrate qðzÞ with respect to z (i.e. calculate total supply energy Q), we found that Q is about equal to )0.1 for

all three cases. This fact shows that as long as the temperature of fluids become uniform within the duct, the total energy

should be the same for a ¼ 0, 50 and 250. The average errors ERR for the estimated temperature for a ¼ 50 and 250 are

0.75% and 2.08%, respectively for z from 5 to 10.

 (a)

(b)

Fig. 8. (a) The estimated optimal control function qðzÞ for a ¼ 0 in test case 3. (b) The estimated temperatures, h1 and h2, for a ¼ 0 in

test case 3.
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8.2. Numerical test case 2

In the second test case the numerical parameters are the same as were used in numerical test case 1 except that the

desired fluid temperature distributions are now Y1ðR; zÞ ¼ Y2ðR; zÞ ¼ 0:2 for z greater than zd, i.e. lower uniform fluid

temperature is required.

The optimal control problem is first examined by using a ¼ 0:0. After 20 iterations (CPU time at Pentium III-600

MHz PC is about 25 s) the solutions for optimal control function qðzÞ can be determined. Fig. 6a shows the estimated

control function and Fig. 6b shows the results for the estimated temperature distributions. It is obvious from Fig. 6a

and b that the estimated final temperature distribution can be satisfied with the desired temperature beyond z ¼ 2:5. The
average error for the estimated temperature is calculated as ERR¼ 0.69% for z from 2.5 to 10.

Next, when the weighting coefficients a ¼ 50 and 500 are used, after 20 iterations for each case, the optimal control

function qðzÞ can be determined. Fig. 7a and b show the estimated qðzÞ and the interface temperature distribution for

a ¼ 0, 50 and 500, respectively. Again as the weighting coefficient increases, the optimal thermal entry length also

increases but the absolute value of maximum strength of the control function and the accuracy of the estimated

Fig. 9. (a) The estimated optimal control functions for a ¼ 0, 50 and 100 in test case 3. (b) The estimated temperatures at R ¼ 1:0 for

a ¼ 0, 50 and 100 in test case 3.
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temperature decreases. The total removed energy is about Q ¼ 0:014 for all three cases. The average errors ERR for the

estimated temperature for a ¼ 50 and 500 are 2.84% and 1.27%, respectively for z from 2.5 to 10.

8.3. Numerical test case 3

A stricter situation is examined in the third test case. The desired temperature distributions for two fluids are in the

following forms

Y1ðR; zÞ ¼ Y2ðR; zÞ ¼ 0:4; 06 z6 5:0
Y1ðR; zÞ ¼ Y2ðR; zÞ ¼ 0:6; 5:0 < z6 10:0

�
ð17Þ

which represents a step change of temperature profile in the duct.

The optimal control problem is performed firstly by using a ¼ 0:0. After 20 iterations the solutions for optimal

control function qðzÞ can be determined. Fig. 8a shows the estimated control function qðzÞ while Fig. 8b shows the result

for the estimated temperature distributions. From those figures we learned that except for some delay due to diffusion of

heat, the requirement of temperature distribution can be satisfied.

Then a ¼ 50 and 100 are considered, after 20 iterations the solutions are shown in Fig. 9a and b for the control

function qðzÞ and interface temperature h1ð1; zÞ and h2ð1; zÞ, respectively. The similar phenomena that were discussed

previously can also be observed here.

From above three numerical test cases we concluded that the CGM can be applied successfully in this coupled

optimal control problem for predicting the boundary control function qðzÞ.

9. Conclusions

An optimal control algorithm based on the CGM with adjoint equation was successfully applied for the solution of

entrance concurrent flow problem in determining the optimal control function. Three test cases involving different

desired fluid temperature distribution and thermal entry lengths were considered. The results show that the CGM does

not require a priori information for the functional form of the unknown control functions and the optimal solutions can

be obtained within a very short computer time.

Acknowledgements

This work was supported in part through the National Science Council, ROC, grant number NSC-90-2611-E-006-

022.

References

[1] M.D. Mikhailov, B.K. Shishedjiev, Coupled at boundary mass or heat transfer in entrance concurrent flow, Int. J. Heat Mass

Transfer 19 (1976) 553–557.

[2] R.P. Stein, The graetz problem in concurrent flow double pipe heat exchangers, Chem. Eng. Prog. Symp. Ser. 59 (1965) 76–87.

[3] M.D. Mikhailov, General solutions of the diffusion equations coupled at boundary conditions, Int. J. Heat Mass Transfer 16

(1973) 2155–2164.

[4] A.G. Butkovskii, A.Y. Lerner, The optimal control systems with distributed parameters, Automat. Remote Control 21 (1960)

472–477.

[5] R.A. Meric, Finite element and conjugate gradient methods for a nonlinear optimal heat transfer control problem, Int. J. Numer.

Meth. Eng. 14 (1979) 1851–1863.

[6] R.A. Meric, Finite element analysis of optimal heating of a slab with temperature dependent thermal conductivity, Int. J. Heat

Mass Transfer 22 (1979) 1347–1353.

[7] C.J. Chen, M.N. Ozisik, Optimal heating of a slab with a plane heat source of timewise varying strength, Numer. Heat Transfer,

Part A 21 (1992) 351–361.

[8] C.J. Chen, M.N. Ozisik, Optimal heating of a slab with two plan heat sources of timewise varying strength, J. Franklin Inst. 329

(1992) 195–206.

[9] C.J. Chen, M.N. Ozisik, Optimal convective heating of a hollow cylinder with temperature dependent thermal conductivity, Appl.

Sci. Res. 52 (1994) 67–79.

1026 C.-H. Huang, C.-Y. Yeh / International Journal of Heat and Mass Transfer 46 (2003) 1013–1027



[10] C.H. Huang, A non-linear optimal control problem in determining the strength of the optimal boundary heat fluxes, Numer. Heat

Transfer, Part B 40 (2001) 411–429.

[11] C.H. Huang, An optimal control problem in estimating the optimal control force for the force vibration system, Int. J. Numer.

Meth. Eng. 52 (2001) 1323–1335.

[12] O.M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin, Heidelberg, 1994.

C.-H. Huang, C.-Y. Yeh / International Journal of Heat and Mass Transfer 46 (2003) 1013–1027 1027


	An optimal control algorithm for entrance concurrent flow problems
	Introduction
	Direct problem
	Optimal control problem
	Conjugate gradient method for minimization
	Sensitivity problem and search step size
	Adjoint problem and gradient equation
	Computational procedure
	Results and discussions
	Numerical test case 1
	Numerical test case 2
	Numerical test case 3

	Conclusions
	Acknowledgements
	References


